Skip to content
Preprint

B. Leimkuhler , T. P. , T. Vlaar , and A. Storkey,
Constraintbased regularization of neural networks,
arXiv:2006.10114, 2020.
Journal Articles

A. Abdulle and T. P.,
Effective models and numerical homogenization for wave propagation in heterogeneous media on arbitrary timescales,
Foundations of Computational Mathematics (2020) : pp. 1–43.

A. Abdulle and T. P.,
Effective models for long time wave propagation in locally periodic media,
SIAM Journal on Numerical Analysis, 56 (2018) : pp. 2701–2730.

A. Abdulle and T. P.,
Effective models for the multidimensional wave equation in heterogeneous media over long time and numerical homogenization,
Mathematical Models and Methods in Applied Sciences, 26 (2016) : pp. 2651–2684.

A. Abdulle and T. P.,
A priori error analysis of the finite element heterogeneous multiscale method for the wave equation over long time,
SIAM Journal on Numerical Analysis, 54 (2016), 1507–1534.

S. Coutu, T. P., P. Queloz, and N. Vernaz,
Integrated stochastic modeling of pharmaceuticals in sewage networks,
Stochastic Environmental Research and Risk Assessment, 30 (2016) : pp. 1087–1097.
Conference Proceeding

A. Abdulle, Y. Bai, and T. P.,
Reduced basis numerical homogenization method for the multiscale wave equation,
in Numerical Mathematics and Advanced Applications – ENUMATH 2013, pp. 397–405.
Springer International Publishing, 2015.
Thesis

T. P.,
Effective models and numerical homogenization methods for long time wave propagation in heterogeneous media,
Doctoral dissertation, École Polytechnique Fédérale de Lausanne, Lausanne, 2017.